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Abstract 

We reconsider the conflict between recent calculations of the semileptonic 
branching ratio of the B meson and the experimentally measured rate. Such 
calculations depend crucially on the application of “local duality” in nonlep- 
tonic decays, and we discuss the relation of this assumption to the weaker 
assumptions required to compute the semileptonic decay rate. We suggest 
that the discrepancy between theory and experiment might be due to the 
channel with two charm quarks in the final state, either because of a small 
value for m, or because of a failure of local duality. We examine the experi- 
mental consequences of such solutions for the charm multiplicity in B decays. 
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I. INTRODUCTION 

Because of the large energy which is released, the decay of a heavy quark is essentially 

a short distance process. This simple observation has led to much recent progress in the 

calculation of the inclusive decays of hadrons containing a heavy quark [l-7]. The method 

relies on the construction of a systematic expansion in the inverse of the energy release, 

given approximately by the heavy quark mass, and hence works most reliably in the bottom 

system. In fact, it is expected that certain features of inclusive bottom hadron decays may 

be reliably predicted with the accuracy of a few percent. 

Considerable attention has been paid to inclusive semileptonic (2-51 and rare [6,7] B 

decays, both to total rates and to lepton and photon energy spectra. There is little con- 

troversy that these calculations rest on a firm theoretical foundation. However, it has been 

suggested to extend these methods to include nonleptonic decays as well [S,S]. This proposal 

has led to an intriguing conflict with experiment, as the predicted nonleptonic widths differ 

significantly from those which may be extracted from the measured semileptonic branching 

ratio of the B meson (91. In this calculation, the short-distance expansion has been carried 

out to third order in the inverse mass l/mb, and a reasonable analysis leads the authors of 

Ref. [9] to the conclusion that it would be unnatural to find the source of the discrepancy 

in uncalculated terms of higher dimension or higher order in o,. 

It is the purpose of this article to reconsider this problem, in particular the assump- 

tions on which the computation is based. In Section II, we review the techniques used to 

treat inclusive decay rates, with an eye to emphasizing the differences between the theo- 

retical foundations underlying the calculations of semileptonic and nonleptonic decays. In 

Section III, we discuss the possible discrepancy between theory and experiment in the B 

semileptonic branching ratio. This might be resolved by an unusually small value for m,, or 

might involve the failure of the key assumption, “local duality”, underlying the calculation 

of the nonleptonic rate. In either case the enhancement of decays into final states with two 

charm quarks is a likely consequence. In Section IV we examine the implications of this for 
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the charm multiplicity in B decays, for which present data do not seem to support an en- 

hancement resulting from the b -+ CES process. The unusual feature of the data on inclusive 

B decays is neither the semileptonic branching ratio alone, nor the charm multiplicity alone, 

but rather the combination of the two. Brief concluding remarks are given in Section V. 

II. THEORETICAL TECHNIQUES 

The weak decay of b quarks is mediated by operators of the form 

0 = J; Jrr , (24 

where 

J( = qy”(l - r5)b, 

JF = WV - -r5)q2 or Zy”( 1 - ys)V( (2.2) 

are fermion bilinears. The inclusive decay rate is given by a sum over all possible final states 

X with the correct quantum numbers, 

r - p 0’ WVI 0 P) * W) 

In this article we adopt the notation that a generic 23 meson contains a b quark, rather than 

a 6 quark. The optical theorem may be used to rewrite Eq. (2.3) as the imaginary part of a 

forward scattering amplitude, 

l? - Im(BjT{(3+,(3} IB). (2.4) 

One then would like to use perturbative QCD to extract information about the time-ordered 

product appearing in Eq. (2.4). Th e extent to which this is possible is precisely the extent 

to which inclusive decay rates may be calculated reliably. 

In the case of semileptonic decays, one may follow a systematic procedure to justify the 

application of perturbative QCD [l]. Up to negligible corrections of order OEM and GF, one 

may factorize the matrix element of the four-fermion operator, 
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(xe(~t)fiL(p~)l J;Jt, IB) = (Xl J; IB)(l(pr)v(pfi)l Jt,lO) , (2.5) 

and consider only the time-ordered product of the quark currents. One then finds an ex- 

pression in which the integral over the momenta of the leptons is explict, 

r- J dydu s GdG2 L,,(v .G, e2, y) W”“(v m&G’), P-6) 

where L,, is the lepton tensor and WJ’” the hadron tensor. Here the momentum of the 

external b quark is written as pr = mbv’. The other independent kinematic variables are 

Q p=p;+p;andy= 2&/r&. It is convenient to Scale all momenta by mb, so 4 = q/mb. 

The hadronic tensor is given by 

Ww” = c(B( Jh’+ IX)(Xl Jhy (B) 

= f2Im (B] i / da: ei9*= T { JC+bL J;W} IB) 
E -21mTP”. (2.7) 

One may perform the integrals in y, v.4 and 4’ in Eq. (2.6) t o compute the total semileptonic 

decay rate, or leave some of them unintegrated to obtain various differential distributions. 

The doubly differential distribution dI’/dy dG2 is a useful case to consider. Here we must 

perform the integral over 21.4, for y and G2 fixed. The range of integration for 2, -4 is given 

by (y + G2/y)/2 5 v -4 5 (1 + 4’ - tit)/2, where m, is the mass of the quark to which the 

b decays, and ti, = mp/mb. This integration is pictured in Fig. la, along with the analytic 

structure of Tp” in the v. 4 plane [l,lO].* The absence of a cut along the real axis in the 

region (1 + G2 - $)/2 < 2, * fj < ((2 + ?+2,)2 - cj2 - 1)/2 is simple to understand in terms 

of the invariant mass pH of the intermediate hadronic state. Such a state may contain no b 

quarks, in which case it is subject to the restriction pk = (mbu - q)2 2 rni (the left-hand 

cut), or it may contain bbtj, in which case p& = (mbv -I- q)2 2 (2mb + m9)2 (the right-hand 

cut). Except in the limit G2 = G,$,, = (1 - r?~,)~ and mp + 0, the two cuts do not pinch. 

‘The discussion of the analytic structure of Tp” given in Ref. [3] is erroneous. We thank B. Grin- 

stein and A.I. Vainshtein for discussions of this point. 
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In Fig. la, we have already included only the imaginary part of Tp” by integrating over 

the top of the cut and then back underneath it. In general, TpY along the physical cut will 

depend on v -4 in a complicated nonperturbative way. We do not necessarily know how to 

compute in QCD in the physical region where there are threshold effects. However, we may 

use Cauchy’s Theorem to deform the contour of integration until it lies away from the cut 

everywhere except at its endpoints, as illustrated in Fig. lb. Along the new contour, we are 

far from the physical region, and we may perform an operator product expansion for Tp” 

in perturbative &CD. Only far from any physical intermediate states is such a calculation 

necessarily valid. However, this is enough to allow us to compute reliably certain smooth 

integrals of T p” by deform’ g m the contour of integration into the unphysical region. That we 

can compute integrals of Tb’” in perturbation theory in this way is the property of “global 

duality”. 

Unfortunately, the contour in Fig. 1 must still approach the physical cut near the end- 

points of the integration. This introduces an uncertainty into the calculation which cannot 

be avoided. Still, one has two arguments that this uncertainty is likely to be small. First, 

for large mb, the portion of the contour which is within AQCD of the physical cut scales as 

Aocn/mb and thus makes a small contribution to the total integral. Second, if the energy 

release into the intermediate hadronic system is large compared to f&D, it is reasonable to 

expect that Tp’” will be well approximated by perturbative QCD even in the physical region. 

This is because in this region the cut is dominated by multiparticle states, and hence the 

strength of the imaginary part of Tp’ is a relatively smooth function of the energy. While 

new thresholds associated with the production of additional pions are found along the cut 

even in this region, their effect is small compared to the smooth background of states to 

which they are being added. 

This intuition, that for large enough energies one may perform the operator product 

expansion directly in the physical region, is “local duality”. While it is a reasonable property 

for QCD to have, it is obviously a stronger assumption than that of global duality. In 

particular, it cannot be justified by analytic continuation into the complex plane. Rather, it 
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rests on one’s sense of how QCD ought to behave at high energies. It is clear, as well, that the 

energy at which local duality takes effect will depend on the operators which appear in the 

time-ordered’ product. Hence the fact that local duality appears to work at a given energy 

in one process, such as in electron-positron annihilation into hadrons, may be suggestive but 

does not prove that it should hold at the same energy in another process. 

To compute the inclusive semileptonic decay rate, then, one may use global duality except 

in a region along the contour of order AqoD/mb, where one must approach the physical cut. 

In this small region one must resort to local duality to justify the operator product expansion. 

Let us now turn to inclusive nonleptonic decays. Here there is no analogue of the factor- 

ization (2.5) which we had in the semileptonic case. Hence there is no “external” momentum 

q in which one may deform the contour away from the physical region, leaving one unable 

to use global duality in the transition to perturbative QCD. In this case, one is forced to 

invoke local duality from the outset if one is to argue that the the time-ordered product TM” 

is computable. This clearly puts the calculation of inclusive nonleptonic B decays on a less 

secure theoretical foundation than that of inclusive semileptonic B decays. 

Nonetheless, we do not mean to assert that the assumption of local duality in nonleptonic 

decays is inherently unreasonable, merely that it is the least reliable aspect of the computa- 

tion. In fact, it is not entirely clear what it is reasonable to expect in this case. On the one 

hand, the energy released when a b quark decays is certainly large compared to AQCD. On 

the other, the decay is initially into three strongly interacting particles (rather than into only 

one for semileptonic decays), and the energy per strongly interacting particle is not really 

so large. (Note that in the semileptonic case, the point at which the contour approaches the 

cut and local duality must be invoked is conveniently the point of masim~m recoil of the 

final state quark, where local duality is expected to work best.) What we propose is that the 
i 

comparison of the nonleptonic decay rate, as computed via the operator product expansion. 

with experiment be taken as a direct test of local duality in this process. As such, it is a 

probe of a property of QCD in an interesting kinematic region, and nonleptonic B decay 

well deserves the intense scrutiny which it has recently been accorded. 
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III. THE SEMILEPTONIC BRANCHING FRACTION OF I3 MESONS 

The experimental implications of inclusive nonleptonic decays of B mesons have recently 

been discussed in great detail by Bigi, Blok, Shifman and Vainshtein [9]. Since the semilep- 

tonic branching ratio of the B is relatively well-measured, they use their calculation of the 

nonleptonic decay rate to predict this quantity. Their conclusion is that the semileptonic 

branching ratio which comes out of their computation is unacceptably high, corresponding 

to a nonleptonic width which is too low by at least 1.520%. In this section we will reconsider 

their analysis. 

The inclusive decay rate of the B meson may be divided into parts based on the flavor 

quantum numbers of the final state, 

rToT = r(b + C&) + r(b + C6d’) + r(b + C~S’). (3.1) 

Here we neglect rare processes, such as those mediated by an underlying b + u transition 

or penguin-induced decays. By d’ and s’ we mean the approximate flavor eigenstates (d’ = 

dcos& -ssin&, s’ = d sin 8i+ s cos @I) which couple to u and c, respectively, and we ignore 

the effect of the strange quark mass. It is convenient to normalize the inclusive partial rates 

to the semielectronic rate, defining 

&d = 
T(b + cud’) 

&a = 
r(b ---) cl;s’) 

3r(b --) cefi) ’ 3r(b + cefi) ’ 
(3.2) 

The full semileptonic width may be written in terms of the semielectronic width as 

r(b --t c(V) = Sf(riz,)l?(b + cefi), (3.3) 

where the factor 3f(riz,) accounts for the three flavors of lepton, with a phase space sup- 

pression which takes into account the r mass. Then, since the semileptonic branching ratio 
i 

is given by Br(b --) CC) = r(b + C&)/rToT, we may rewrite Eq. (3.1) in the form 

Rud + L = f(k) 
1 - Br(b + c&) 

Br(b + c&) ’ 
(3.4) 

The measured partial semiieptonic branching fractions are [11,12] 
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Br(B + XeY) = 10.7 f 0.5%, 

Br(B + Xpfi) = 10.3 f 0.5%) 

Br( B + Xm) = 2.8 f 0.6%) (3.5) 

leading to a total semileptonic branching fraction Br(b -+ CC) of 23.8 f 0.9%, with the 

experimental errors added in quadrature. Of the semileptonic rate, 11% comes from decays 

to T, corresponding to a phase space suppression factor f(ti,) = 0.74, consistent with 

what one would expect in free quark decay [5,13]. If we substitute the measured branching 

fractions into the right-hand side of Eq. (3.4), we find 

& + R,, = 2.37 f 0.12. (3.6) 

We now compare this constraint with the theoretical calculations of R,,d and R,,. 

The ratios &d and R,, depend on the total rates r(b --+ ceil), I’(b -+ hid’) and r(b ---) 

ccs’). Each of these has a theoretical expansion in terms of a,(p) and l/mb. Since corrections 

of order l/mb vanish and those of order l/m; are numerically expected to be at the few 

percent level [l-4,6,7,9], we include here only the radiative corrections. Neglecting terms of 

order o:(p), the expansions take the form 

T(b + ceti) = r,r(~,,o) . 

r( b + ctid’) = ry(riz,, 0) * 37(p) 

I’( b + ES’) = lTol(rfzC, 0) . 37,44G(fi4 { 1 - y (r2 -; +S”(T?~) + i,(p)) . (3.7) 

The prefactor r 0 = G~m~jVcb)2/192n3 will cancel in the ratios & and R,,, as will the 

charm quark phase space suppression I(+&, 0) [13], to be discussed below. 

The radiative corrections have been computed analytically to order a, in the limit m, = 

0, and for semileptonic decays up to one numerical integration for general m, [14]. For 

semileptonic decays we absorb the correction due to ti, # 0 into &l.(ti,) and present the 

numerical value of &J(&,) below. Finite charm mass effects for nonleptonic decays are 

absorbed into &,,j(&,) and J,,(rjZ,). Because these quantities have not been computed, we 
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present numerical results in the case of nonleptonic decays only for ti, = 0. The expressions 

for I’(b + tid’) and I’(b -+ CZS’) in Eq. (3.7) are somewhat more complicated than that for 

I?( b -+ ccc), due to renormalization group running between p = h!w and p = mb. The 

leading logarithms are resummed into rl = (2L: + L?)/3, where [15] 

L 
a,(p) -6'23 + = c+4w) 1 1 ' L 

a,(p) 12’23 

- = a.(Mw) 1 I * (3.8) 

The subleading logarithms, which must be included if terms of order ad(p) are also to be 

kept, are assembled into J2, 

J = 2ab) lg q+610g-if- Lz_ - L: h(P) 2qp+ + cp- 2- 

37r mb 2L: +Lt 
+ 2 

2L$ + Lz_ 
3 (3.9) 

where p+ = -E = -0.51 and p- 9371 
=EG = 1.47 arise from two-loop anomalous dimen- 

sions [16]. The factor 3 in Eq. (3.7) is for the sum over colors in the final state. Finally, 

there is an additional phase space suppression G(ti,) 

of the two charm quarks. This factor is given by [13] 

where 

w-4 = 
qk, 6) 
qf;t 

CY 

o) 7 

1(x,0) = (1 - x4)(1 - 8s’ + x4) - 24x4 log x , 

in r(b 4 CC?) because of the masses 

(3.10) 

1(x, x) = t,‘---( 1 - 14x2 - 2x4 - 12x9 + 24x4( 1 - z”) log 
1+Ji-X? 

1--X/m 
. (3.11) 

In terms of the theoretical expressions (3.7) for the partial widths, the ratios take the form 

Ruci = p(P) + @ud(/b +b) , 

Rc, = Gh) [w + ms(P, &)I , (3.12) 

where 

m4 = 77(P) 1 + Q&d 
y + J2W 1 , 

24-4 
b~t&,~c) = dd 3n -[&d.(k) - &d(k)] , 
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24Co 
m&fjlc) = V(P) 3= - [a.l.(rnc) - &s(~c,] (3.13) 

parametrize the radiative corrections. As emphasized in Ref. 191, if the theoretical expressions 

(3.12) are inserted, then Eq. (3.6) is not well satisfied. For example, if one simply takes the 

(5) reasonable values p = mb = 4.8GeV, m, = 1.5GeV, A,, = 180MeV and spud = 6P,, = 0, 

then P(p) = 1.27, G(&) = 0.36 and the left-hand side of Eq. (3.6) is only 1.73. We are 

thus tempted to push the uncertainties in the calculation as far as is reasonable, in order to 

see how much of the discrepancy can be resolved within the context of the operator product 

expansion. 

The largest uncertainty in the theoretical expression for R,d + R,, comes from the choice 

of the charm and bottom masses. Up to certain ambiguities which have recently been 

discussed [17], within perturbation theory these masses should be taken to be the pole 

masses [3,18]. Th ese masses have not been determined with much precision. However, 

within the heavy quark expansion, the difference between m, and mb is much more precisely 

known? in terms of the spin-averaged D meson and B meson masses: 

mb - m, = (hf~)~“~. - (hf~),,,. = 3.34 GeV . (3.14) 

In what follows, we will hold mb -m, fixed, and consider variations of mb only. A reasonably 

conservative range for mb might be 4.4 GeV 5 mb 5 5.0 GeV, which corresponds to 0.24 < 

tic 5 0.33. In Fig. 2, we plot G(7jZ,) as a function of mb, using the Constraint (3.14). In 

Fig. 3, we plot P(p) f or a variety of values of the QCD scale AK [ll]. 

We start by considering &d, for which the calculation is likely to be more reliable, since 

it is less sensitive to rit,. There is uncertainty in the radiative correction P(p) from the 

choice of the renormalization scale 1-1. The usual choice ~1 = mb is motivated by the fact 

that the total energy released in the decay is mb. However, this energy has to be divided 

between three particles, so perhaps the appropriate scale is lower. For /.J = 1.6 GeV M mb/3, 

a reasonable lower limit, and A% = 180 MeV, we find P(p) = 1.45, a modest enhancement 

over p = 4.8 GeV. If AZ is taken as high as 220MeV, we have P(p) = 1.52, which 
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makes a small additional difference. The uncertainty in SP,, is harder to estimate, since 

a,,(&,) has not been calculated. However, one may extract 6,.r.(riz,) by doing a numerical 

integration of the formulas in Ref. [14]. For 7jz, = 0.30, we find 5,~. = -1.11, corresponding 

to (2as(nb)/3~)S,.,.(l=) = -0.050. Th e magnitude of this correction grows approximately 

linearly with r?z,, and for riz, = 0.33, we have 6,~. = -1.20. Hence the term is small and 

actually reduces Z&d, although one might expect it to cancel in whole or in part against 

the term proportional to a,,(&). What we can conclude at this point is that the error 

associated with ignoring the charm quark mass in the radiative corrections is likely to be no 

larger than f0.05, and henceforth we will neglect this effect. 

The lead ii 

acterized by 

Gb = (B(v) I 

try, the para 11 

ng nonperturbative strong interaction corrections to R,d and R,, are char- 

the two dimensionless quantities Kb = -(B(z~)]&,(iD)~6, ]B(v))/2m,2 and 

~~gsG&‘“~v I@))/477$ Because it breaks the heavy quark spin symme 

neter Gb may be determined from the measured B’ - B mass splitting, but 

the value of Kb is not known. Fortunately, Kb does not occur in the nonperturbative cor- 

rection to &d. (Using the “smearing” technique of Ref. [3], this cancelation arises because 

T(b -+ c&f) and J?(b + ceY> have the same dependence on mb.) For &d, then, we are more 

confident than for R,, that the nonperturbative QCD corrections are small. Note, however, 

that there is a contribution to the mass difference in Eq. (3.14) involving h’b and h’,, which 

we have neglected. 

The above estimates lead us to the conclusion that with the effects we have included in 

the operator product expansion, it is difficult to avoid the upper bound &d 5 1.52. If this is 

true. then Eq. (3.6) would imply R,, 2 0.85. This can barely be achieved in the theoretical 

expressions we have given. If we vary 4.4GeV 5 mb 5 5.0 GeV, as suggested above, then 

0.27 < G(&) 5 0.58. Estimating the radiative corrections as before, with A& = 220 MeV, - 

. this suggests the upper limit R,, 5 0.89, or &d + R,, _< 2.43. This is in agreement with 

experiment, but on the other hand, it requires us to push all the freedom in the calculation 

in the same direction, perhaps further than is reasonable. If one were to take the point of 

view that p = 2.4 GeV M ?nb/2 were the lowest reasonable value for CL, then one would have 
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the constraints &d 5 1.44, &, 5 0.83 and &d + R,, 5 2.27. If one were further to require 

mb 1 4.6GeV, one would have R,, I 0.67 and &d + R,, < 2.10. In this case, one might 

consider the discrepancy with experiment to be a more serious issue. 

Another possibility is that the relevant scale for the radiative corrections in the decay 

to two charm quarks is considerably lower than that for the final state with a single charm. 

Since the rest masses of the two charm quarks absorb approximately 60% of the energy 

available in the decay, the strongly interacting particles are not emitted with very large 

momenta. For example, the average energy of the strange quark in the decay b + CCS, 

computed at tree level, is only about 1 GeV. With such a low energy the procedure of 

estimating the value of higher order QCD corrections by varying the subtraction point ~1 

is of dubious value. In fact one might question whether any finite order of perturbation 

theory is adequate and whether threshold effects that cause a violation of local duality are 

important. 

It is evident from this discussion that nothing is particularly clear. Although the data on 

inclusive nonleptonic decays can almost be accounted for by squeezing the input parameters, 

one might feel a little nervous about the necessity of such a conspiracy. After all, as men- 

tioned earlier the “reasonable” values p = mb = 4.8 GeV, m, = 1.5 GeV and Ag = 180 MeV 

lead to & = 1.27 and R,, = 0.46, far short of the mark. An enhancement of approximately 

40% in the nonleptonic rate is called for. If one were to require this effect to be found 

entirely in R,,, it would amount to more than a factor of two. While we are less inclined 

than the authors of Ref. [9] t o insist that something is amiss, it is nonetheless intriguing to 

consider the possibility that the data indicate an enhancement of the nonleptonic rate over 

and above what we have included in the operator product expansion. Where might such an 

enhancement come from? 

The simplest explanation would be that due to a failure of local duality, the inclusive 

nonleptonic decay rate is simply not calculable to better than 40% or so. This is certainly 

a discouraging explanation, in that if it were true then there would be very little one could 

say in detail about why local duality, and hence the calculation, had failed. One was simply 
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unlucky. On the other hand, this explanation may well be correct. While we expect local 

duality to hold in the asymptotic limit of infinte b quark mass, we have little to guide us 

in estimating how heavy the b quark actually needs to be in practical terms. In particular, 

it is not relevant to consider, at low orders in QCD perturbation theory, the size of a 

few subleading terms which appear in the operator product expansion itself. The matrix 

elements which appear in this expansion are sensitive to details of the B meson bound state, 

but they are explicitly not sensitive to resonance effects in the final hadronic state. 

If local duality fails, it could well fail differently in the I’(b + cGf’) and I’(b + CS’) 

channels. In fact, we would expect it to fail worse in the channel with two charm quarks, 

since we expect the final states to be characterized by lower particle multiplicity and be 

closer to the resonance-dominated regime. Local duality, by contrast, is applicable only 

in the regime where the effect of individual resonance thresholds is small compared to the 

almost smooth “continuum” of multiparticle states. On the other hand, the phase space 

suppression from the two final state charm quarks means that unless m, is unusually small, 

only thirty percent or so of the inclusive nonleptonic rate comes from the I’(b + CG’) 

channel. Hence, to account for an enhancement of the full nonleptonic rate by forty percent 

purely from b + CCS’ would require a dramatic failure of local duality in this channel. 

IV. EXPERIMENTAL CONSEQUENCES OF AN ENHANCEMENT OF R,, 

Either through a failure of local duality, or from an unusually small value for m,, or 

because of a combination of these effects, the value of R,, is likely to be near unity in order 

to account for the measured Z3 semileptonic branching ratio. This corresponds to about 

one-third of Z3 decays arising from the b + CG’ process. One consequence of this is a large 

number of charmed quarks per B decay, 

nc = 1 + R,, 
Br(B --) x,efi> 

f(W * 
(4.1) 

We remind the reader that we have adopted the notation that a generic B meson contains 

a 6 quark, rather than a 6 quark. Using Br(B + X, G) = 23.8% and f(&,) = 0.74 in 
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Eq. (4.1) yields 

n, = 1.00 + 0.32 R,, , (4.2) 

which for the values of R,, necessary to explain the semileptonic branching ratio would 

indicate n, w 1.3. 

There are contributions to the experimental value of n, from charmed mesons, charmed 

baryons, and cz resonances. The number of charged and neutral D mesons per decay, 

summed over I3 and ??, has been measured to be [19] 

np = 0.246 zk 0.031 f 0.025, 

nDO,F = 0.567 zk 0.040 f 0.023. (4.3) 

The branching ratio to 0: mesons has not yet been determined, because no absolute D, 

branching ratio has been measured. However, it is known that [20] 

nD!, = (0.1224 f 0.0051 f 0.0089) 
3.7% 

Br(D, ~ 4n) 1 , (4.4) 

and the branching ratio for D, +’ &r is expected to be about 3.7%. 

We must include in n, twice the inclusive branching ratio to all CC resonances which 

are below DD threshold. The measured inclusive branching ratio to II, is (1.11 f O.OS)%, 

including feed-down from $J’ and xc decays [19]. It is also known that Br( B + $‘X) = 

(0.32 Z!Z 0.05)%, Br(B --) XCIX) = (0.66 f 0.20)% and Br(B + 7,X) < 1%. Hence we 

expect that the inclusive B branching ratio to charmonium states below DD threshold is 

about 2%. 

The inclusive B decay rate to baryons is about 6% [19]. While it is commonly believed 

that these baryons arise predominantly from the b + ciid’ process, giving A,X final states, 

we argue elsewhere [2l] that a large fraction of B decays to baryons actually arise from the 

6 + CCS’ process, which gives final states with both a charm baryon and an anticharm baryon, 

such as EC&X. E VI ‘d ence for this interpretation comes from the experimental distribution of 

A, momenta, which shows that the AC’s produced in I3 or p decay are recoiling against a state 
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with a mass greater than or equal to the mass of the E, [22-24). This novel interpretation 

of B decays to baryons can be consistent with the measured M* correlations if Br(,, t 

AX)/Br(A, + AX) is large [21]. 

Even if B decay to baryons predominantly gives final states with both a charm and an 

anticharm baryon, the data summarized above do not provide supporting evidence for a 

value of n, around 1.3. Given the uncertainties, however, such a large value for the number 

of charmed hadrons per B decay is perhaps not excluded. From our perspective the curious 

feature of the data on inclusive B decay is not the measured semileptonic branching ratio 

alone, but rather the combination of it with the data on charm multiplicity in these decays. 

In this paper we have neglected B decays that do not arise from an underlying b -* c 

transition. Other possible processes include the b + u transition and contributions from 

penguin-type diagrams. While it is very unlikely that such sources contribute significantly 

to the nonleptonic decay rate, this assumption can be tested experimentally, if enough 

branching ratios can be measured. The fraction of B decays arising from the b + c transition 

is given by the sum of the B branching ratio to charmonium states below D’zc’j threshold, the 

branching ratio to states containing at least one charmed baryon, and the branching ratios 

to the ground state charmed mesons, Br(B + DOX), Br(B -+ D+X) and Br(B -+ 0:X). 

Note that the inclusive charm yields reported in Eqs. (4.3) and (4.4) are actually sums of 

branching ratios (for example, neglecting CP violation, ng* = Br(B + D+X) + Br(B + 

D-X)). However, it should be possible with enough data to extract the individual branching 

ratios themselves. 
-- 

For example, one could count the number of DD (or D D) events per BE event at the 

T(45), 

n(DD) = (1 - b) Br(B -+ DX) Br(B + DX) i 

+i [Br(B t DX) Br(B + DX) + Br(B -+ DX) Br(?? + D-v] 

w(l-b)Br(BdDX)Br(B+ DX)+iBr(B- DX)Br(B+ OX), (4.5) 

and 
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n(DDz) = (1 - b) (Br(B + DX) Br(B + DrX) + Br(B + 0:X) Br(Iii + DX)] 

+i [Br(B + DX) Br(B + 0:X) + Br(B + DX) Br(z -+ 0:X)] 

ES (1 - b) Br(B + DX) Br(B + 0:X). WI 

where b x 0.076 is the B -B mixing parameter [25]. It is defined as the fraction of B meson 
-- 

events which are BB or B B, and is measured directly from lepton-lepton sign correlations, 

b= NBB+N~B Nt+t+ -I- NM- 
NBB + NBS + NBB = Nt+p -I- Nt+(+ -I- N,-,- * 

(4.7) 

Combining Eqs. (4.3) and (4.5), we may extract Br(B -+ DX) and Br( B + TX) sepa- 

rately, if we neglect CP violation and impose the constraint Br(z + DX) = Br( B + DX). 

.4nalogously, we may extract Br(B + D$X) and Br(B ---+ 0,X). Another method for 

determining individual branching ratios would involve tagging the flavor of the B which 

produced the charmed hadron by measuring the charge of a hard primary lepton from the 

other B in the event. 

Invoking a large violation of local duality has some implications for the pattern of B 

meson decays which may be different from what would be expected if local duality held 

and an unusually small value of m, were used to explain the measured B semileptonic 

branching ratio. For example, a violation of local duality in the b + czs channel could lead 

to quite different lifetimes for the B, B, and Ab, differences which are small in the operator 

product expansion because they arise only from higher dimension operators. However, since 

the effective Hamiltonian for this process has isospin zero, the equality of the B” and B- 

lifetimes would not be disturbed. Similarly, violations of local duality in b + aid’ could lead 

to unequal B” and B- lifetimes. B decay event shapes can also provide a test of the free 

quark decay picture for the b -+ aid’ decay channel [26]. 

V. CONCLUDING REMARKS 

We have examined whether the measured B meson semileptonic branching ratio can be 

explained within the conventional application of the operator product expansion, in which 
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operators of low dimension are kept and perturbative corrections are included to a few orders 

in o,. We have found that this scenario would require an unusually small value for m,. If 

instead the explanation lies outside the conventional application of the operator product 

expansion, then a failure of local duality in the 6 + CES’ channel is the likely explanation 

for the discrepancy with experiment. In either case, we expect the number of charmed 

hadrons per B decay to be approximately 1.3. Unfortunately, the present data on charm 

multiplicities do not support such a large value of n,. From our perspective, the unusual 

feature of inclusive B decay is not the semileptonic branching ratio alone, nor the charm 

multiplicity alone, but rather the combination of the two. Together, they would seem to 

suggest a significant violation of local duality in the b -+ ciid’ nonleptonic decay process. 

From a theoretical point of view, however, such a resolution would be somewhat unsettling, 

as it would indicate a breakdown in the computation of the nonleptonic decay rate in the 

region where it is expected to be the most reliable; we understand why such a conclusion 

was resisted by the authors of Ref. [9]. Still, it remains an open possibility, indicating 

perhaps that the invocation of local duality in quark decay requires a considerably larger 

energy release than has been naively hoped or expected. Given the apparent difficulties in 

performing a reliable computation of the nonleptonic decay rate, then, the CKM matrix 

element v,b should be extracted from the B semileptonic decay width rather than from the 

B lifetime. The uncertainties in such an extraction arise primarily from the choice of mb 

and subtraction point CL, and are discussed in detail in Refs. [27,28]. 
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FIGURES 

FIG. 1. Contours in the complex u -6 plane, for fixed i2 and y. The gap between the cuts 

extends for (1 + G2 - tii)/2 c v - 4 c ((2 + 61,)~ - rj2 - 1)/2. The endpoints of the contour integral 

are at 2, + i = (y + Q2/y>/2 f h. 

FIG. 2. The phase space suppression factor G(riz,), as an implicit function of mb with 

mb - mc = 3.34 GeV held fixed. 

FIG. 3. The radiative correction P(p). The upper curve corresponds to AK = 220MeV, the 

middle curve to AK = 180 MeV, and the lower curve to A& = 140 MeV. We take mb = 4.8 GeV. 
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